Computers & Graphics 34 (2010) 719-728

Contents lists available at ScienceDirect M

&GRAPHICS

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Example-based interactive illustration of multi-field datasets

Stef Busking *, Charl P. Botha, Frits H. Post

Data Visualization Group, Delft University of Technology, Mekelweg 4, Delft, The Netherlands

ARTICLE INFO

ABSTRACT

Keywords:

Multi-field visualization
Mllustrative visualization
Interactive exploration

Multi-fields are widely used in areas ranging from physical simulations to medical imaging. Illustrative
visualization techniques can help to effectively communicate features of interest found in a given field.
Current techniques for multi-field visualization are mostly focused on showing subsets of local
attributes such as single values or vector directions, e.g., using colors, texture, streamlines or glyphs.
Instead, we present an approach based on highlighting areas with similar characteristics, considering all
attributes of the field.

Our approach is example-based and interactive. A user simply selects a point within the field, upon
which the system automatically derives the characteristic combination of attributes for that point. Our
system then automatically creates a visualization highlighting areas within the field which are similar
to the example point with respect to these characteristics. The visualizations are presented using
sparse, illustrative techniques, using contours and colors to clearly delineate and identify separate
areas. Users can interact with the visualizations in real-time, by moving the example point or,
optionally, by changing the characteristics or adjusting other parameters used to determine similarity.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Detection and extraction of features is an important step in the
process of visualizing any dataset. Features are patterns of
interest within the data. As interest in and specification of such
patterns vary between applications, features are often segmented
from the data using application-specific approaches.

With this work, our contribution is the following: We present a
method whereby user interest in any multi-field dataset can be
indicated by simply pointing somewhere in the dataset. Based on
a real-time analysis of the high-dimensional data attributes at this
example point and a point of contrast, the system then
determines and illustrates all similar regions as feature objects.
The user can interactively manipulate existing or add new feature
objects, resulting in illustrations such as shown in Fig. 1. This
enables an explorative approach to the specification and
investigation of features in multi-field datasets.

Our techniques can be used to create an illustration-by-
exploration approach: Rather than creating a single visualization
that shows all features, we create sparse, user-guided visualiza-
tions of specific features, where an overview of the entire dataset
and the context of features is obtained through exploration rather
than being given in a single, potentially cluttered image.
[llustrative rendering techniques are well-suited to visualize

* Corresponding author.
E-mail addresses: s.busking@tudelft.nl (S. Busking),
c.p.botha@tudelft.nl (C.P. Botha), f.h.post@tudelft.nl (F.H. Post).

0097-8493/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2010.07.004

features found through such exploration, due to their sparseness
and ease of interpretation.

These techniques can supplement existing visualization and
segmentation techniques by offering a quick and intuitive way to
explore a given dataset, and assist in locating and examining the
characteristics of features in the dataset. This information can
then be used by existing techniques to extract and/or quantify
such features.

In the following, we first discuss work related to multi-field
visualization and our proposed approach. We then present our
interactive exploration approach, followed by a detailed descrip-
tion of the feature extraction and rendering techniques involved.
We illustrate our approach with several example visualizations of
extended vector and tensor fields. Finally, we present our
conclusions and directions for future work.

The complete implementation of our techniques and the
prototype application have been released as open source software
and are available at http://multifieldexplorer.googlecode.com/.

2. Related work

Fields are functions that are defined on the spatial domain.
Multi-fields or multi-field datasets simply refer to datasets
consisting of two or more fields on the same spatial domain. This
definition includes data consisting of any combination of multiple
scalar fields, vectors and tensors. For an extensive overview on the
visualization of this type of data, we refer the reader to the survey

http://multifieldexplorer.googlecode.com/
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.07.004
mailto:s.busking@tudelft.nl
mailto:c.p.botha@tudelft.nl
mailto:f.h.post@tudelft.nl
dx.doi.org/10.1109/TVCG.2009.184

720 S. Busking et al. /| Computers & Graphics 34 (2010) 719-728

Fig. 1. Illustrative visualization, created using our approach, of a multi-field
representing the flow behind a tapered cylinder, placed vertically on the right side
just outside the field. The field consists of the velocity vector field and its
derivatives. The illustration highlights the alternating vortices characteristic for
such flow. The transparent surface shows the area where flow velocity is altered
by the cylinder.

by Fuchs et al. [1]. In the remainder of this section, we give a
compact summary of current work on multi-field data visualiza-
tion, grouping and ordering techniques according to their level of
data abstraction.

In feature-tracking, features are objects, local behaviors or
other patterns of interest in a dataset, whereas in many other
fields they are the dimensions of a feature space or components of
an image. In order to resolve this ambiguity, we refer to the
former as feature objects, while the components of a multi-field
are referred to as attributes.

Current techniques for vector field visualization often focus on
showing directions [2]. In tensor visualization, second order
symmetric tensors can be represented by ellipsoids or super-
quadrics [3], or reduced to their principal directions and
visualized as a vector field. Analogously, many techniques for
multi-scalar visualization are also based on representing
each sample point with a single visual element. For example, in
multi-scalar volume rendering, the transfer function is extended
to map from the multi-dimensional input space to the RGBA
output space [4]. These techniques all attempt to visualize
multi-field data as directly as possible.

Visualization of quantities derived from a field can often show
more about the field than a visualization of only the direct
attributes that are part of the field. For example, the inclusion of
image gradients has been shown to lead to better transfer
functions [4], and Busking et al. [5] visualized deformation vector
fields by highlighting areas of significant change in volumes based
on a measure derived from the field’s Jacobian. However, different
derived quantities may be required for different applications.
Van Walsum et al. [6] presented a framework which allowed
users to select and visualize arbitrary quantities derived from
vector fields. Their system also allowed users to combine the
resulting feature objects using Boolean set operations. Similar
compositing techniques were applied to the visualization of
multi-field and time-varying data by Woodring and Shen [7],
although only direct attributes of the fields were used in their
work.

A multi-field can also be seen in terms of its feature space,
where each attribute is a dimension. Henze [8] presented a
visualization approach using multiple views of “linked derived
spaces”, which are essentially projections of this feature space.
Kniss et al. [4] presented a dual-domain interaction approach for
exploring multi-field volume data, where interactions in the
spatial domain are mapped to a linked view of the feature space.
This view can then be used to manipulate transfer functions
(defined on this feature space), which are in turn used for direct
volume rendering of the volume data in the spatial domain. This
idea was further developed by linking multiple scatter plots of the
feature space with a direct volume rendering showing selected
subsets of the data [9-11].

Finally, feature extraction techniques attempt to reduce
complexity in the data by extracting physically meaningful
patterns, hence lifting the resultant visualization to a higher level
of abstraction [12]. This is also the goal of visualization techniques
based on topology [13], clustering [14,15] or the extraction of
physical properties, such as vorticity. Vortex extraction, the most
common type of feature extraction technique for vector fields, is
often based on a combination of physical and mathematical
criteria [12].

The efficacy of topology techniques on vector and tensor data
is highly dependent on the presence and configuration of,
respectively, critical and degenerate points. Results of clustering
are often too dense for illustration. Furthermore, control is limited
to selecting clustering heuristics, which may be non-intuitive.
Both techniques are also computationally intensive, which makes
them less suitable for interactive use. Extraction of physical
properties is highly domain-specific.

Ma proposed using machine learning techniques, neural
networks for example, to extract meaningful physical feature
objects from the multi-field data, based on user interaction [16].
This is a good attempt towards automatic generation of feature
detection criteria, but is difficult to control and not directly and
transparently linked to field attributes.

In this paper, we combine the direct visualization of arbitrary
combinations of field attributes with a feature space approach and
example-based interaction. Rather than visualizing attributes
directly, we introduce the use of local similarity as the basis for
feature selection. We use example-based, user-adjustable
similarity measures computed in feature space to visualize
feature objects consisting of all points within a dataset that are
similar to a user-defined example. This way, rather than
specifying the characteristics of feature objects directly
(e.g., extracting an iso-surface of attribute X at value Y), the user
can simply point at interesting areas in the data.

In our work, illustration plays an important role in visually
summarizing the data. Illustrative visualization is often used to
give a deliberately unbalanced view of a complex scene, by
emphasizing objects of interest, de-emphasizing or suppressing
other objects, and showing context only for orientation. Various
techniques have been proposed to integrate such visualizations of
focus+context in a single image, including cut-away views or
importance-driven visualization [17]. One could also see exam-
ple-based feature specification as a flexible and interactive
method of specifying an importance field. For our work, however,
we take advantage of the interactivity of our techniques to create
a strongly selective approach, where the objects shown are only
those selected by the user. Context should be provided either by
interactive exploration, the addition of other user-specified
objects, or by integration of our techniques with existing, possibly
domain-specific techniques.

In terms of the example-based specification of feature objects,
our work is related to the stroke-based transfer function
specification of Ropinski et al., where the user specifies interesting

S. Busking et al. /| Computers & Graphics 34 (2010) 719-728 721

edges by indicating them directly in the rendering by means of a
stroke, resulting in the automatic specification of a transfer
function that emphasizes the visual appearance of all stroked
edges [18]. Our approach is differentiated by catering for
multi-fields and utilizing the direct calculation of similarity
versus indirect application through a transfer function.

3. Interactive exploration

We aim for interactivity, as this enables our visualization to be
used as a tool for interactive exploration as well as for creating
illustrations that are effective in conveying meaningful feature
objects identified during exploration. Globally, the work-flow of a
user using our system to illustrate a field is as shown in Fig. 2:

1. As a pre-processing step, a multi-field is constructed from the
input field, containing any number of attributes. For example, a
vector field can be extended by adding derived quantities such
as magnitude, divergence or curl. Adding such attributes
allows any feature objects characterized by these attributes
to be identified and visualized by our system. It also allows the
system to better describe such feature objects to the user by
presenting the defining characteristics in terms of these
attributes.

2. Selection: the user selects a point of interest within the field, or
a pair of points which is to be compared. The values at the first
point determine the example on which the feature object is
based. The second point, if given, determines values that
should be outside the feature object.

3. Abstraction: the system automatically determines character-
istic attributes for the given point or pair of points and
presents these to the user.

4, Generalization: Based on these characteristics the system
determines an appropriate similarity measure. This measure
combined with the example point defines a similarity field
over the dataset.

5. Filtering: the resulting feature object, consisting of all points in
the volume that are similar to the selected point with respect
to the chosen characteristics, is visualized interactively by
thresholding the similarity field.

6. Feedback: moving the selected point of interest updates the
visualization in real-time, allowing interactive exploration of
the data. The user can also refine the feature object by
manipulating the selection of characteristics, or by selecting
from a number of visual styles to add additional semantics to
the illustration.

The process can be repeated to add any number of additional
feature objects to the illustration. In this way, a user can select

multiple feature objects by using multiple example points, each
with its own selection of characteristics and visual styles, thereby
creating an illustration combining all feature objects of interest.

Section 4 describes our techniques for example-based selec-
tion of meaningful feature objects. These objects are visualized
interactively using illustrative styles, which are detailed in
Section 5.

4. Example-based selection of feature objects

Our illustrative exploration approach is based on extracting
similarity-based feature objects from the data. These objects are
defined as those areas which are similar to a user-defined point
with respect to a combination of user-defined characteristics. We
use a similarity measure defined on the points of the multi-field in
combination with a pair of user-selectable thresholds to derive
such areas. By adjusting the thresholds, the user can decide when
points are considered “similar enough” to be included in the
feature object.

Our approach is based on the notion of feature spaces.
A sampling of any multi-field consisting of N variables can also
be interpreted as a set of points in a feature space of N dimensions.
Section 4.1 describes our definition of similarity in such a feature
space. The methods for creating a compact feature space in which
these similarity measures can be applied are described in Section
4.2. Finally, Section 4.3 describes how we use user-defined
examples to derive appropriate parameters in order to enable
our interactive exploration approach.

4.1. Similarity

Various similarity metrics for multi-fields or vector fields have
been proposed in literature [19,20]. Most of these, however, only
compute global similarity between whole fields. Furthermore,
some metrics are expensive to compute.

As noted above, we base our similarity metric on the feature
space representation of the multi-field. Similarity (or rather
dissimilarity) is equivalent to distance within this feature space.
We transform the original feature space using projection and
scaling in order to provide user control and example-based
refinement of the similarity measure. To keep our application
simple and interactive, we use the p-norm to measure distances in
this transformed space:

N 1/p
d@b)= <Z |a,-—b,-|">

i=0
Here, a and b are feature vectors consisting of the values of all
attributes of the multi-field, representing the two points that are
being compared, after applying the feature space transformations

Preprocessing Selection >

Abstraction >

e

Generalization] >

Filtering

= Extend field with ¥
derived quantities

= Data centering

= Autoscaling

= PCA

Interactive Exploration

Feedback “

Fig. 2. The workflow in our interactive illustration system. Defining a feature object consists of selecting an example point in the field (selection). The values at this point
are used to automatically select characteristics of interest (abstraction). These are then used to generate a similarity measure (generalization), from which the feature
objects are extracted (filtering). The system is interactive, allowing a user to provide feedback and immediately observe the results in the visualization.

722 S. Busking et al. /| Computers & Graphics 34 (2010) 719-728

described below. The parameter p > 1, can be used to change the
type of norm computed. This is generally set to 2 for the Euclidean
norm.

4.1.1. Projection

Not all attributes may be of interest when determining
similarity. In fact, a user may want similarity to be invariant
with respect to certain attributes. If those attributes directly
correspond to dimensions in the feature space it suffices to simply
omit the respective values from the similarity computation.
However, we reduce the dimensionality of the feature space
before visualization using principal component analysis
(as described in the next section). In this case attributes can be
eliminated by projection onto a subspace containing only the
remaining attributes. To achieve this, the transformation between
the original and reduced feature spaces is stored during pre-
processing. The projection of a feature space point is computed by
transforming the point’s feature vector back to the original space,
setting the values corresponding to the attributes that are to be
ignored to zero and transforming the result back to the reduced
feature space.

4.1.2. Non-uniform scaling

Furthermore, we enhance the similarity computation by intro-
ducing a bias vector. The bias vector is a vector in feature space,
determined automatically based on user input (see Section 4.3),
along which this space can be stretched before determining
similarity. The effect is that changes proportional to the linear
combination of attributes specified in the vector have more
influence on the value of the similarity measure than other
changes, as illustrated in Fig. 3. Stretching is implemented as
simple linear scaling along the bias vector with user-adjustable
scaling factor s. Adjusting the scaling factor allows the similarity
measure to be shifted between neutral (s = 1) or any amount of
bias (s > 1). Values s < 1 are also allowed; the resulting similarity
measure favors similarity in ways uncharacteristic of the selected
example. Such measures may be used to uncover patterns
normally obscured by trends in the most characteristic
attributes for a point.

The scaling operation is made volume-preserving with respect
to the user-selected feature subspace by pre-scaling the entire
space uniformly by factor s, =s~N=1 then scaling along the
bias vector by s, =s/s,. Here N is the number of dimensions of the
original feature space remaining after projection. This way, given
a uniform distribution of points in the feature space, feature
objects will include approximately the same number of points

Fig. 3. Non-uniform scaling of the feature space. The orange circle represents the
thresholded similarity measure, and the small circles represent the example
(yellow) and other feature vectors. Stretching the feature space makes the
measure more sensitive to changes along the bias vector (represented by the black
arrow) and less sensitive to other changes. (a) Normal feature space, (b) biased
feature space. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

regardless of the value of s. In the case where s approaches
infinity, the similarity measure becomes equivalent to distance
along the bias vector.

4.2. Creating the feature space

Multi-fields can potentially have large numbers of attributes,
which directly affects performance and memory requirements in
an interactive application. Furthermore, feature space dimensions
may be heterogeneous in scale, or contain statistically dependent
behavior.

In order for our techniques to find interesting relations,
however, it is good to have a large number of attributes between
which such relations may be found. Additionally, feedback
(e.g., on user selections and bias vectors) is given and projections
are defined in terms of these attributes. This means a good
selection of attributes can help a domain expert to understand
features found in the dataset in terms of the application domain.
For this reason we pre-compute the feature space for a given
multi-field in four steps:

1. Build the feature space from the points in the original
multi-field. Optionally add various derived quantities as
attributes of the field, such as local derivatives (e.g., gradients)
or application-specific measures relevant to the user’s interest.

2. Center the feature space on the origin by computing the mean
value over the data for each dimension and subtracting this
mean vector from each point.

3. Scale the centered feature space such that the variance over
each dimension is 1 by dividing each dimension’s values by
their standard deviation.

4, Perform principal component analysis (PCA) on the scaled
space, then transform the data to a basis of eigenvectors in
order to reduce the dimensionality while maintaining as much
data variance as possible.

PCA creates a basis of eigenvectors in order of how much they
account for the variability in the original data. This means
dimensionality can be reduced by selecting only a subset of the
first N eigenvectors. However, if the original feature space is
heterogeneous in nature, the PCA may favor larger scale
dimensions. To alleviate this, we use autoscaling (i.e., division by
the standard deviation for each dimension) to pre-scale the
feature space dimensions, such that PCA is based on correlation
rather than covariance. Pre-treatment techniques such as auto-
scaling can strongly influence the results of the PCA. The selection
of an appropriate technique is therefore highly application-
dependent. Van den Berg et al. [21] give a good overview of
autoscaling and alternative techniques, and their effects on the
results of the PCA.

PCA is a commonly used technique in pattern recognition for
the purposes of reduction and decorrelation of high-dimensional
data. While our experiments (see Section 6.2) have shown that
the resulting feature spaces enable good selections of features
within the data, alternative approaches exist as well. Heimann
and Meinzer [22] give a good overview of alternative techniques
for dimensional reduction in the context of statistical shape
models, which could also be adapted to this application.

4.3. Example-based similarity

Feature objects are extracted by thresholding the similarity
field created by comparing each point in the data with the values
at the user-defined example location. We use the bias vector to
steer the similarity measure to not only consider the values at this

S. Busking et al. /| Computers & Graphics 34 (2010) 719-728 723

location, but also their relative proportions. The bias vector is
automatically determined based on the example vector of values at
that location and a second contrast vector. We provide two options
for selecting the second vector:

e The contrast vector can be set to the mean feature vector
computed over the entire field. This way, deviations from the
mean are emphasized as characteristic attributes for any user-
selected point.

e The contrast vector can be sampled at a user-defined location.
For instance, by selecting a location outside of the objects of
interest in the field, characteristic attributes can be deter-
mined based on comparison to background values. Alterna-
tively, such a selection can be used to emphasize the
differences in characteristics between different feature objects
in the field by placing example and contrast points in the
objects to be compared.

While the resulting bias vector is normalized before being used
to stretch the feature space, its original length is used (together
with the stretch factor) to adjust the user-defined thresholds. This
way, a threshold of 1 will lead to the feature object including all
points with similarity values up to the difference between the two
points that were selected.

In summary, given an arbitrary point g, example feature vector
X (sampled at a user-defined location) and contrast feature vector
c (which is either the mean of the data or the feature vector at a
second user-defined position), the corresponding feature object is
extracted as follows:

1. Sample the multi-field to obtain the feature vector p
corresponding to p.

2. Project feature vectors p, X and ¢ to a subspace which
eliminates a user-defined subset of “irrelevant” attributes.

3. Transform the projected feature vectors p’ and X' to the
stretched space given by the bias vector v = x—c and a user-
defined bias factor s.

4. Compute the p-norm distance between the resulting vectors p”
and x”.

5. Compare the resulting value to the user-defined thresholds to
classify point p as being inside or outside of the feature object.

5. Illustrative visualization

Our objects of interest are areas similar to the user-defined
examples. We visualize each of these feature objects using an iso-
surface of the similarity measure at a user-defined threshold.
As we aim for our visualization to be used in interactive
exploration scenarios, we use a sparse visualization style which
is easy to comprehend, but provides enough detail to help the
user gain insight into the data. Our style is inspired by schematic
drawings as used in biology and engineering, which make heavy
use of contours and simple textures to delineate and annotate
feature objects in an image.

In order to enable interactive exploration and to avoid the
complexities of surface extraction, we render the iso-surfaces
directly using a ray casting approach. Using current generation
GPU hardware, ray casting approaches can be implemented with
real-time performance.

We use a GPU ray casting algorithm based on the technique
introduced by Kriiger and Westermann [23]. Rendering involves
using a rasterized bounding volume to determine ray entry and
exit points. These are then used to trace each ray in parallel using
a fragment shader, stepping through the multi-field in fixed
intervals. At each point along a ray, we sample from volumes

containing the pre-processed field values to obtain the feature
vector for that point. The similarity measures for all feature
objects are then evaluated as described in Section 4 in order to
find intersections with the feature objects’ surfaces. If multiple
surface intersections are found, the positions of these intersec-
tions are refined and then sorted. The front-most intersection
determines the surface visualized for that ray.

We use a deferred shading approach [24] in order to create our
illustrative visualization style. Rather than performing surface
shading directly during ray casting, our ray casting pass outputs
surface information to a G-buffer, including feature object
number, surface normal and the position of the ray-surface
intersection. The deferred shading pass uses only the information
in this buffer to shade the corresponding pixels. Furthermore, in
order to support the use of transparent surfaces, we use depth-
peeling [25] in order to apply the deferred shading enhancements
to each of the surfaces encountered along the rays. The results of
each deferred shading pass are composited to create the final
image.

The deferred shading pass is used to create the illustrative
style of our visualizations. The use of transparent surfaces can
help show the interior structure of feature objects, but multiple
nested transparent surfaces are often hard to interpret. To
alleviate this, object contours are enhanced using image-based
detection of silhouettes, surface intersections and sharp edges.
This enables the viewer to easily distinguish the shapes of feature
objects even if transparent surfaces are used. Fully transparent
surfaces (showing only contours) can be used as well, and may be
helpful for adding contextual information to a visualization.

By default, simple colors are used to identify the feature
objects in the image. Additionally, users can select from a number
of screen-space texture patterns to be overlaid on the feature
object surfaces. These textures can be used as a form of
annotation, for example, a pattern consisting of “plus” glyphs
can be used to indicate expansion or growth, while “minus”
glyphs can indicate decreases in local volume.

Furthermore, we apply screen-space ambient occlusion (SSAO)
to simulate global illumination (Ritschel et al. give a good
overview of related work in this area [26]). It has been argued
[27] that correct global illumination improves perception of
surface shape and depth in visualizations, and helps the user
better understand the 3D positions of feature objects relative to
each other. As it is straight-forward to integrate existing SSAO
techniques in a deferred shading pipeline, their description falls
outside the scope of this paper.

6. Results

We implemented our techniques in C+, using OpenGL and
GLSL for all GPU-based algorithms. A user interface was created
(see Fig. 4) which, in addition to our visualization of the feature
objects, includes several controls to manipulate the parameters of
each feature object.

A 2D slice view of the field allows users to specify example
points within the field. The example position is updated
interactively by simply hovering over the slice viewer, allowing
for easy exploration of the field. The values for the field’s
attributes at the selected point are visualized using a set of
colored rectangles, where values are mapped to colors relative to
the mean value over the field. In case the field has been reduced in
dimensionality (such as described in Section 4.2), the stored
transformation is used to convert values back to the original
feature space before visualization. The normalized bias vector
resulting from the user’s selection is visualized in a similar way.
Clicking the individual rectangles in this view allows the user to

724

gl

Busking et al. /| Computers & Graphics 34 (2010) 719-728

Multi-Field Explorer

Reference: Mean value
<6.58163, -4.84634, 5>

<4,94898, -2,44898, 5>
Properties:

Editing feature at: <6.37755, -4.08163, 5>

v| Use mean

| Enabled

Lower threshold: ITE‘ — - 000
Upper threshold: . : fE
Power: ‘_17} : 200
Remove Feature | Stretch: — A o0

| AddFeature

Fig. 4. The prototype application visualizing a synthetic dataset in real-time (64 x 64 x 64 points). The interface consists of our visualization (top left), a slice viewer for
selecting example points (top right), a list of all current feature objects (bottom left), colored rectangles representing the values in the contrast vector, the values at the
current point and the resulting bias vector (middle) and a set of sliders for manipulating the thresholds and bias factor for the current feature object. In this case, two

feature objects have been defined with different example points.

further manipulate the definition of similarity by selecting the
corresponding attributes to be ignored for this feature object’s
similarity measure.

6.1. Performance

As our techniques are aimed at interactive exploration, we
measured their performance using several datasets. Using a
current generation GPU (NVIDIA GeForce GTX 280), performance
is generally suitable for interactive exploration. As our techniques
are based on ray casting, performance is strongly dependent on
the resolution of the vector field under consideration. Using a
dataset of 512 x 512 x 80 (Fig. 6(b)), average frame rates were
around 12 frames per second when rendering at 600 x 600
resolution. Image resolution does not influence performance as
strongly, as modern GPUs are highly parallelized. Performance
and data sizes can likely be improved by integrating existing
optimization and large-data-handling techniques from volume
rendering literature.

As discussed in Section 5, we used depth-peeling to enable
transparent surfaces to be used. This adds a separate shading pass
for each layer in the scene, as well as requiring ray casting to
proceed beyond the first surface hit, with both leading to
decreased performance. With up to 6 layers of transparent feature
object surfaces, performance of the same dataset was around
7 fps, which is still suitable for interactive use. If no transparent
surfaces are used, depth-peeling is not required.

Our current implementation is limited to data sets which fit in
GPU memory. This means both the dataset size in voxels as well
as the number of attributes of the (PCA-reduced) multi-fields are
limited. However, it would be straightforward to adapt current
work on volume rendering for large datasets (e.g., Kniss et al. [28])
to our approach, in order to enable larger volumes to be explored
interactively. Similarly, our implementation of the pre-processing
stage currently uses an in-core approach. Processing of the largest
dataset used in the paper took around 20 min and up to 7 GB of
RAM on a recent machine. However, unless the user needs to
refine the selection of attributes, this only needs to be done once
per dataset.

6.2. Examples

We visualized several example datasets in order to demonstrate
our approach. These datasets from different application domains
contain well-known features, which are typically extracted and
shown using application-specific techniques. This section shows
how our techniques can be used to quickly find and visualize such
features in an application-independent manner, thereby demon-
strating the flexibility of our approach and validating its usefulness
as a first step in exploring multi-field datasets.

Our first example is a computational fluid dynamics dataset
representing the flow behind a tapered cylinder. The full dataset is
time-dependent and can be obtained online from NASA. As our
techniques do not yet handle time-dependent data, we used

S. Busking et al. /| Computers & Graphics 34 (2010) 719-728 725

a single frame from the dataset. Additionally, we cropped and
re-sampled the (originally 64 x 64 x 32 curvilinear) dataset to a
regular grid of 128 x 128 x 204 points. We extended this vector
field dataset into a multi-field during pre-processing by adding a
simple set of derived attributes: In addition to the vector data, we
added the normalized vector, the vector magnitude, and several
vector calculus derivatives of the field. The derivatives were all
computed from the Jacobian of the field: the trace of the Jacobian
matrix is the divergence of the field, while its determinant
indicates changes in volume. We also included curl, a vector-
valued attribute describing local rotation. The Jacobian can be
computed at a user-defined scale, which enables filtering of
small-scale details such as noise.

At certain flow speeds, such as the one used in the simulation
which created the dataset, a pattern of vortices forms behind the
cylinder. These vortices alternate between clockwise and
counter-clockwise directions. We used our techniques to
illustrate this flow behavior.

By using a single feature object and simply moving the
example point in the area behind the cylinder, two opposing
patterns can be located. Fig. 5(a) shows one of these feature
objects. The visualization of the example feature vector for this
object, shown below the figure, indicates that the directional
components of the field (the first six attributes) are highly
characteristic of the selected example point. Masking out the

a

non-directional attributes of the field and increasing the bias
factor to further emphasize the characteristic attributes reveals
more of the pattern. The visualization of the example vector also
shows that directions in the second feature object, shown in
Fig. 5(b) are opposite to the first.

As the yellow and blue areas indicate regions with directions
opposite to each other, we can assume the vortices exist between
these areas. To highlight these, we use a pair of feature objects
with the similarity measure made invariant to direction, and
example points set between the yellow and blue feature objects.
Fig. 5(c) shows how these new feature objects (pink and green)
capture a similar recurring pattern between the yellow and blue
objects. The visualization of the example vector confirms that
these are the vortices, as curl (represented by the rightmost three
rectangles) is the characteristic attribute for the new objects.
Again, values for these attributes are opposite to each other,
indicating rotation in opposite directions. Fig. 5(d) shows the final
visualization of the extracted feature objects, revealing the 3D
structure of these vortex patterns. Fig. 1 shows another visualiza-
tion of these vortices, with an added feature object representing
the area where the flow velocity is altered by the presence of
the cylinder.

Fig. 6 shows visualizations of a vector field resulting from the
non-rigid registration of two MRI scans of a human knee. The use
of such deformation fields is common in medical image analysis.

Fig. 5. Using our techniques to explore the flow behind a tapered cylinder. Slice views show steps in the exploration process. The crosshairs indicate example positions, the
colored rectangles below each image visualize (from top to bottom) the contrast and example feature vectors as well as the bias vector for the corresponding feature object.

(a) Single feature object, (b) opposing flow directions, (c) vortices, (d) 3D visualization.

726

b

S. Busking et al. /| Computers & Graphics 34 (2010) 719-728

Fig. 6. Visualizations of a deformation field (512 x 512 x 80 points) representing changes between two MRI scans of a human knee. (a) Direct visualization of deformation [5],

(b) similarity-based feature objects.

Fig. 7. Visualizations of a dataset (85 x 79 x 101 points) consisting of simulated stress and strain tensors in a human femur with a hip joint replacement implant. (a) Stress

tensor streamlines [29], (b) similarity-based feature objects.

Busking et al. [5] created direct visualizations of such fields by
visualizing a growth measure derived from the Jacobian
determinant of the field (Fig. 6(a)). A similarity measure based
on a subspace containing only this growth attribute can capture
the same feature objects (Fig. 6(b)). Furthermore, by exploring the
data using feature objects with different feature-subspaces, areas
were found with low magnitude but a significant increase in
volume. These were highlighted in green using a feature object
based on both magnitude and growth.

Missing from our current implementation is a visualization of
relevant context information. However, the techniques could
easily be combined with a visualization of contours such as used
in the earlier work mentioned above (shown in green in Fig. 6(a)).
Context information could also be visualized with our feature
objects if the relevant data is included in the multi-field.

Fig. 7 shows a visualization of a dataset used for hip joint
replacement planning. This dataset consists of two tensor fields
representing simulated stress and strain resulting from pressure

being applied to the implant and femur bone. Dick et al. [29]
recently presented techniques for visualizing such fields
interactively with streamlines following the first principal
component of the stress tensor, shown in Fig. 7(a). Fig. 7(b)
shows similar structures highlighted using our techniques,
applied directly to the tensor field. The visualization clearly
shows the opposing tension (yellow) and compression (blue)
parts of the implant (shown in purple and green in Fig. 7(a)), as
well as the similarly opposing effects on the sides of the bone
itself (shown in pink and green).

7. Conclusions

Our contribution in this paper is a new method for the
interactive visualization and exploration of multi-fields.
Our technique is based on the direct visualization of similarity,

S. Busking et al. /| Computers & Graphics 34 (2010) 719-728 727

defined as distance in a feature space, where the similarity
measure is automatically derived from user-specified examples.

While our prototype implementation offered the concepts
presented as the only option for exploring a dataset, we expect
similarity-based techniques for exploration and visualization to
be integrated with traditional direct visualization of field
attributes. This way, traditional visualizations can guide a user
in locating points of interest. Our techniques then automatically
highlight similar areas within the dataset, the details of which the
user can further explore using different visualization techniques.

Our techniques lead to an intuitive approach to interactive
exploration, as little interaction (only point selection) is required
in order to explore a given field. Furthermore, the concepts and
techniques presented are generic, and can be applied to the
visualization of any type of multi-field.

In this work we have presented a proof of concept for a new
idea, supported by several application examples demonstrating
the utility of the proposed method. When these concepts have
been integrated into a real visualization system for such an
application, that would present a good opportunity to perform
user-oriented evaluation.

7.1. Future work

While our techniques can be applied to any type of multi-field,
extension to time-varying data is more involved. Feature tracking
techniques could be applied to track user-defined features over
time. New visual representations should be developed to visualize
the evolution over time of any detected feature objects. Stompel
et al. [30] presented various illustrative techniques for enhancing
the visualization of features in multi-field and time-varying
datasets, which could be applied to our feature objects for
this purpose.

The techniques proposed could be applied to segmentation of
features from a given dataset. Boolean combinations of feature
objects, as used by van Walsum et al. [6] and Woodring and
Shen [7], could be used to specify areas to segment. More
advanced filtering techniques could also be added, including the
detection of connected components to distinguish between
separate parts of the same feature object. Alternative similarity
metrics should also be investigated. A variety of metrics in
combination with a system for combining feature objects would
create a powerful system for segmentation by example.

The definition of examples could also be extended. For
example, tracing techniques like streamlines are frequently used
to visualize vector fields, while brushing techniques are fre-
quently used to make selections in other example-based systems.
Such selections consisting of multiple points could be used as
examples in our approach by, e.g., averaging attributes over the
set, or by considering similarity of points as compared to the
example point closest to the point being evaluated. This way, our
approach can be integrated with application-specific techniques
for feature selection. For instance, in a medical brain dataset, areas
with similar characteristics could be selected around fibers traced
from DTI data.

Finally, we plan to integrate our approach with other
visualization techniques. In addition to highlighting areas using
our current rendering techniques, similarity-based feature objects
could also be used to indicate importance or user interest in an
importance-based visualization approach.

Acknowledgements

We are grateful to Dipl.-Inf C. Dick of the Computer Graphics
and Visualization group, Technische Universitdt Miinchen, for

providing the hip joint replacement datasets. This research
is supported by the Netherlands Organization for Scientific
Research (NWO), project number 643.100.503 “Multi-Field
Medical Visualization”.

Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.cag.2010.07.004.

References

[1] Fuchs R, Hauser H. Visualization of multi-variate scientific data. Computer
Graphics Forum 2009;28(6):1670-90.

[2] Laramee RS, Hauser H, Doleisch H, Vrolijk B, Post FH, Weiskopf D. The state of
the art in flow visualization: dense and texture-based techniques. Computer
Graphics Forum 2003;23(2):203-21.

[3] Kindlmann G. Superquadric tensor glyphs. In: Proceedings of IEEE TVCG/EG
symposium on visualization; 2004. p. 147-54.

[4] Kniss], Kindlmann G, Hansen C. Multidimensional transfer functions for
interactive volume rendering. IEEE Transactions on Visualization and
Computer Graphics 2002;8(3):270-85.

[5] Busking S, Botha CP, Post FH. Direct visualization of deformation in volumes.
Computer Graphics Forum 2009;28(3):799-806.

[6] van Walsum T, Post FH. Selective visualization of vector fields. Computer
Graphics Forum 1994;13(3):339-47.

[7] Shen HW, Woodring]. Multi-variate, time varying, and comparative
visualization with contextual cues. IEEE Transactions on Visualization and
Computer Graphics 2006;12(5):909-16.

[8] Henze C. Feature detection in linked derived spaces. In: Proceedings IEEE
visualization; 1998. p. 87-94.

[9] Gresh DL, Rogowitz BE, Winslow RL, Scollan DF, Yung CK. WEAVE: a system
for visually linking 3-D and statistical visualizations applied to cardiac
simulation and measurement data. In: Proceedings of IEEE visualization
2000; 2000. p. 489-92, 597.

[10] Doleisch H, Gasser M, Hauser H. Interactive feature specification for
focus+context visualization of complex simulation data. In: VISSYM '03:
Proceedings of the symposium on data visualisation 2003, Eurographics
Association; 2003. p. 239-48.

[11] Blaas], Botha CP, Post FH. Interactive visualization of multi-field medical
data using linked physical and feature-space views. In: Museth K,
Ynnerman A, Moller T, editors. Proceedings of eurographics/IEEE-VGTC
eurovis; 2007. p. 123-30.

[12] Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H. The state of the art in
flow visualisation: feature extraction and tracking. Computer Graphics Forum
2003;22(4):775-92.

[13] Hege HC, Theisel H, Seidel H-P, Weinkauf T. Saddle connectors—an approach
to visualizing the topological skeleton of complex 3D vector fields. In:
Proceedings, IEEE visualization; 2003. p. 225-32.

[14] Griebel M, Preusser T, Rumpf M, Schweitzer M, Telea A. Flow field clustering
via algebraic multigrid. In: Proceedings, IEEE visualization; 2004. p. 35-42.

[15] McKenzie A, Lombeyda S, Desbrun M. Vector field analysis and visualization
through variational clustering. In: Proceedings, eurographics/IEEE-VGTC
symposium on visualization, vol. 2005; 2005. p. 29-35.

[16] Ma K-L. Machine learning to boost the next generation of visualization
technology. IEEE Computer Graphics and Applications 2007;27(5):6-9.

[17] Viola I, Kanitsar A, Groller ME. Importance-driven volume rendering.
In: Rushmeier H, Turk G, van Wijk], editors. Proceedings of IEEE visualization
2004; 2004. p. 139-45.

[18] Ropinski T, Pra8ni JS, Steinicke F, Hinrichs KH. Stroke-based transfer function
design. In: IEEE/EG international symposium on volume and point-based
graphics; 2008. p. 41-8.

[19] Dinh HQ, Xu L. Structural, Syntactic, and Statistical Pattern Recognition. In:
Lecture notes in computer science, vol. 5342; 2008. p. 187-96.

[20] Seidel H-P, Theisel H, Réssl C. Using feature flow fields for topological
comparison of vector fields. In: Proceedings vision modeling and visualiza-
tion; 2003. p. 521-8.

[21] van Den Berg RA, Hoefsloot HC], Westerhuis JA, van Der Werf M], Smilde AK.
Centering, scaling, and transformations: improving the biological information
content of metabolomics data. BMC Genomics 2006;7:142.

[22] Heimann T, Meinzer H-P. Statistical shape models for 3D medical image
segmentation: a review. Medical Image Analysis 2009;13(4):543-63.

[23] Kriiger], Westermann R. Acceleration techniques for GPU-based volume
rendering. In: IEEE visualization proceedings; 2003. p. 287-92.

[24] Saito T, Takahashi T. Comprehensible rendering of 3-D shapes. In: Proceed-
ings, ACM SIGGRAPH; 1990. p. 197-206.

[25] Diefenbach PJ. Pipeline rendering: interaction and realism through hardware-
based multi-pass rendering. PhD thesis, University of Pennsylvania; 1996.

[26] Ritschel T, Grosch T, Seidel H-P. Approximating dynamic global illumination
in image space. In: Proceedings symposium on interactive 3D graphics and
games; 2009. p. 75-82.

10.1016/j.cag.2010.07.004

728 S. Busking et al. /| Computers & Graphics 34 (2010) 719-728

[27] Westin CF, Banks DC. Global illumination of white matter fibers from DT-MRI
Data, mathematics and visualization. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2008. p. 173-84 [chapter 10].

[28] Kniss], McCormick P, McPherson A, Ahrens], Painter], Keahey A, et al.
Interactive texture-based volume rendering for large data sets. IEEE
Computer Graphics and Applications 2001;21(4):52-61.

[29] Dick C, Georgii], Burgkart R, Westermann R. Stress tensor field visualization
for implant planning in orthopedics. IEEE Transactions on Visualization and
Computer Graphics 2009;15(6):1399-406.

[30] Stompel A, Lum EB, Ma K-L. Visualization of multidimensional, multivariate
volume data using hardware-accelerated non-photorealistic rendering
techniques. In: Proceedings of 10th pacific conference on computer graphics
and applications 2002; 2002. p. 394-402.

	Example-based interactive illustration of multi-field datasets
	Introduction
	Related work
	Interactive exploration
	Example-based selection of feature objects
	Similarity
	Projection
	Non-uniform scaling

	Creating the feature space
	Example-based similarity

	Illustrative visualization
	Results
	Performance
	Examples

	Conclusions
	Future work

	Acknowledgements
	Supplementary data
	References

